A THEORY ON CONSTRUCTING 2^{m-p} DESIGNS WITH GENERAL MINIMUM LOWER-ORDER CONFOUNDING*

By Pengfei Li, Shengli Zhao and Runchu Zhang
University of Alberta, Qufu Normal University, Nankai University and Northeast Normal University

Abstract

Choosing optimal designs under model uncertainty is an important step before conducting real experiments. The criterion of general minimum lower-order confounding (GMC) proposed by Zhang et al. (2008) controls the lower order factorial effects to be most slightly aliased with one another in an elaborate way, for choosing design. The construction of GMC 2^{m-p} designs with $n / 2 \leq m<n$, for any runnumber $n=2^{m-p}$, was considered with an approach of complementary design before. In this paper, we develop a theory of constructing GMC 2^{m-p} designs for $5 n / 16+1 \leq m \leq n / 2$ as well as $m \geq n / 2$. The results indicate that when $m \geq 5 n / 16+1$, every GMC design, up to isomorphism, simply consists of the last m columns of the saturated $2^{(n-1)-(n-1-m+p)}$ design with Yates order. Moreover, we prove that, at least for the following parameter intervals, every GMC design differs from minimum abberation design: $5 n / 16+1 \leq m \leq n / 2-4$, and when $m \geq n / 2,4 \leq m+2^{r}-n \leq 2^{r-1}-4$ with $r \geq 4$.

1. Introduction. Regular two-level fractional factorial designs are most commonly used in practical experiments. In the passed three decades, many statisticians payed a great of attention on selecting this kind of optimal designs, see Wu and Hammada (2000) and Mukerjee and Wu (2006) for a detailed review. Minimum abberation (MA) criterion is one of the most common criteria for this purpose. A large number of related papers appeared on this aspect since the landmark work Fries and Hunter (1980), such as Franklin (1984), Chen and Wu (1991), Chen et al. (1993), Chen and Hedayat (1996), Tang and Wu (1996), Zhang and Shao (2001), Butler (2003), Cheng and Tang (2005), Chen and Cheng (2006) and Xu and Cheng (2008).

However, MA criterion sometimes does not result in satisfactory designs. Wu and Chen (1992) introduced a notion of clear effect and noted that, MA criterion can not always find out the designs that possess maximum number of clear two-factor interactions (2fis). Later on, more and more examples of design with the maximum numbers of clear main effects and 2fi's but different from MA design are found, see Wu and Hamada (2000) and Li et al. (2006). For recent developments in this area,

[^0]we can refer to Chen and Hedayat (1998), Tang et al. (2002), Wu and Wu (2002), Ai and Zhang (2004), Chen et al. (2006), Yang et al. (2006) and Zhao and Zhang (2008). One usually calls the design with maximum numbers of clear main effects and 2fis an optimal design under clear effects criterion.

The third one for selecting optimal designs is maximum estimation capacity criterion, firstly introduced by Sun (1993). Its aim is to estimate as many as possible models involving all the main effects and some 2 f 's. For details we refer to Cheng and Mukerjee (1998) and Cheng et al. (1999).

Recently, by introducing a new pattern, called aliased effect-number pattern, Zhang et al. (2008) discussed advantages and disadvantages of the above criteria and proposed a new criterion, a general minimum lower-order confounding (GMC, for short) criterion. They have proved that, under the effect hierarchy principle the GMC criterion has much better performance than MA and clear effects criteria at finding optimal regular designs. Later on, Zhang and Mukerjee (2008) gave a further characterization to the GMC criterion via complementary set. The theory developed in their paper has been proved to be powerful when the number of factors in the complementary design is less than or equal to 15 .

The purpose of the present paper is to contribute a theory on constructing GMC 2^{m-p} designs, which ideally works when the number of factors m is larger than $5 n / 16$, where n is the run-number of design.

The rest of this paper is organized as follows. In the next section, we review the definitions of MA and GMC criteria and introduce some notations. Especially, an important theorem is given in this section. In Section 3, a theory on constructing GMC designs, for $5 n / 16+1 \leq m \leq n / 2$ as well as $m \geq n / 2$, is developed. Some results on parameter intervals in which the GMC and MA designs are different are obtained in Section 4. In Appendix, we give a proof of the important theorem stated in Section 2.
2. Definitions, notations and an important theorem. Let D denote a 2^{m-p} design with m factors, $n=2^{m-p}$ runs, and p independent defining words. The p independent defining words generate a group, called defining contrast group of D. We denote the factors by $1,2, \ldots, m$ and also call $1,2, \ldots, m$ letters. Every element not I (the identity element) in the group is called a word. The number of letters in a word is called its wordlength. Let $A_{i}(D)$ denote the number of words with length i in the defining contrast group of D. The vector $A(D)=\left(A_{1}(D), A_{2}(D), \ldots, A_{m}(D)\right)$ is called wordlength pattern of D. The resolution of a design is the smallest r satisfying $A_{r}>0$. A 2^{m-p} design with resolution r is denoted by 2_{r}^{m-p}. MA criterion is the rule to find design D, such that $\left(A_{1}(D), A_{2}(D), \ldots, A_{m}(D)\right.$) is sequentially minimized in all possible regular designs with the same parameters.

We now review some concepts of the GMC criterion for two-level regular designs in Zhang et al. (2008). If an i th-order effect is aliased with $k j$ th-order effects simul-
taneously, we say that the severe degree of the i th-order effect being aliased with j th-order effects is k. Let ${ }_{i}^{\#} C_{j}^{(k)}$ denote the number of i th-order effects aliased with j th-order effects at degree k, and put

$$
{ }_{i}^{\#} C_{j}=\left({ }_{i}^{\#} C_{j}^{(0)},{ }_{i}^{\#} C_{j}^{(1)}, \ldots,{ }_{i}^{\#} C_{j}^{\left(K_{j}\right)}\right),
$$

where $K_{j}=\binom{n}{j}$. The sequence or the set

$$
\begin{equation*}
{ }^{\#} C=\left({ }_{1}^{\#} C_{1},{ }_{0}^{\#} C_{2},{ }_{1}^{\#} C_{2},{ }_{2}^{\#} C_{1},{ }_{2}^{\#} C_{2},{ }_{0}^{\#} C_{3},{ }_{1}^{\#} C_{3},{ }_{2}^{\#} C_{3},{ }_{3}^{\#} C_{1},{ }_{3}^{\#} C_{2},{ }_{3}{ }^{\#} C_{3}, \ldots\right) \tag{2.1}
\end{equation*}
$$

is called an aliased effect-number pattern (AENP). In (2.1) as a sequence, the general rule of ${ }_{i}^{\#} C_{j}$ being placed ahead of ${ }_{s}^{\#} C_{t}$ is as follows: if $\max (i, j)<\max (s, t)$, or if $\max (i, j)=\max (s, t)$ and $i<s$, or if $\max (i, j)=\max (s, t), i=s$ and $j<t$.

Zhang and Mukerjee (2008) found that some terms in (2.1) are uniquely determined by the terms before them. For example, ${ }_{j}^{\#} C_{1}^{(1)}=\sum_{k \geq 1} k_{1}^{\#} C_{j}^{(k)}$. They further refined the sequence (2.1) to the simpler version

$$
\begin{equation*}
{ }^{\#} C=\left({ }_{1}^{\#} C_{2},{ }_{2}^{\#} C_{2},{ }_{1}^{\#} C_{3},{ }_{2}^{\#} C_{3},{ }_{3}^{\#} C_{2},{ }_{3}^{\#} C_{3}, \ldots\right) . \tag{2.2}
\end{equation*}
$$

The GMC criterion based on (2.2) is defined as follows.
Definition 1. Let ${ }^{\#} C_{l}$ be the l-th component of ${ }^{\#} C$, and ${ }^{\#} C\left(D_{1}\right)$ and ${ }^{\#} C\left(D_{2}\right)$ be the AENPs of designs D_{1} and D_{2}, respectively. Suppose that ${ }^{\#} C_{t}$ is the first component such that ${ }^{\#} C_{t}\left(D_{1}\right)$ and ${ }^{\#} C_{t}\left(D_{2}\right)$ are different. If ${ }^{\#} C_{t}\left(D_{1}\right)>{ }^{\#} C_{t}\left(D_{2}\right)$, then D_{1} is said to have less general lower-order confounding than D_{2}. A design D is said to have general minimum lower-order confounding if no other design has less general lower-order confounding than D and such a design is called a GMC design.

For convenience of presentation, we introduce some notations as follows. For a 2^{m-p} design, denote $q=m-p$ and let $1, \ldots, q$ stand for q independent factors. Further let H_{r} be the set containing all main effects $1, \ldots, r$ and all interactions between $1, \ldots, r, S_{q r}=H_{q} \backslash H_{r}, F_{q r}=\left\{q, q H_{r-1}\right\}$ and $T_{r}=\left\{r, r H_{r-1}\right\}$, where $q H_{r-1}=\{q d:$ $\left.d \in H_{r-1}\right\}$ and $r H_{r-1}$ is similarly defined with conventions $F_{q 1}=\{q\}, T_{1}=\{1\}$, $q H_{1-1}=\{q\}$, and $1 H_{1-1}=\{1\}$. Obviously, the designs $F_{q r}$ and T_{r} with $r \geq 3$ are the saturated resolution $I V$ design with r independent factors, which is unique up to isomorphism. We introduce both notations $F_{q r}$ and T_{r} for easy presentation in Sections 3 and 4. Without loss of generality, suppose the columns in $H_{r}, r=1, \ldots, q$ are written in Yates order. That is,

$$
H_{1}=\{1\} \text { and } H_{r}=\left\{H_{r-1}, r, r H_{r-1}\right\} \text { for } r=2, \ldots, q
$$

Throughout the paper, let S denote a design, a subset of H_{q}, with s factors (columns). All the results presented in this section are based on such S. Through

[^1]the paper, we will treat the design S in which the s factors are independent as one with resolution at least $I V$, including $s \leq 3$, since it possesses the essential property of resolution at least $I V$: all main effects are not aliased with any other main effects and 2 fis.

For a given design $S \subset H_{q}$ and a $\gamma \in H_{q}$, define

$$
B_{i}(S, \gamma)=\#\left\{\left(d_{1}, d_{2}, \ldots, d_{i}\right): d_{1}, d_{2}, \ldots, d_{i} \in S, d_{1} d_{2} \cdots d_{i}=\gamma\right\}
$$

where \# denotes the cardinality of a set and $d_{1} d_{2} \cdots d_{i}$ means the i th order interaction of $d_{1}, d_{2}, \ldots, d_{i}$. By this definition, $B_{i}(S, \gamma)$ is the number of i th order interactions of S appearing in the alias set that contains γ. With the consideration above, the complementary set of a design is also a design. For the convenience of presentation in this paper, we define

$$
\begin{equation*}
\bar{g}(S)=\#\left\{\gamma: \gamma \in H_{q} \backslash S, B_{2}(S, \gamma)>0\right\} . \tag{2.3}
\end{equation*}
$$

Note that for the $g(S)$ defined in Zhang and Mukerjee (2008), just $g(S)=\bar{g}\left(H_{q} \backslash S\right)$ here. Minimizing $g(S)$ has been proved to be important when finding GMC designs, see Zhang and Mukerjee (2008). It is also a necessary condition in our theory.

In the following, we first give an important theorem, which studies the structure of a design S when $\bar{g}(S)$ is minimized, and will play a key role in developing the later theory on constructing GMC designs. The proof of the theorem is deferred to Appendix.

Theorem 1. Let $S \subset H_{q}$ be a design with s factors (columns). Then, under isomorphism, we have
(a) if $2^{r-1} \leq s \leq 2^{r}-1$ for some $r \leq q$ and $\bar{g}(S)$ is minimized in all the designs with s factors, then the S exactly has r independent factors and $S \subset H_{r}$;
(b) if $2^{r-2}+1 \leq s \leq 2^{r-1}$ for some $r \leq q$ and $\bar{g}(S)$ is minimized in all the designs with s factors and resolution at least $I V$, then also the S exactly has r independent factors and $S \subset F_{q r}\left(\right.$ or T_{r});
(c) if $2^{r-2}+1 \leq s \leq 2^{r-1}$ for some $r \leq q$, then S sequentially maximizes the components of

$$
\begin{equation*}
\left\{-\bar{g}(S),{ }_{2}^{\#} C_{2}(S)\right\} \tag{2.4}
\end{equation*}
$$

in all the designs with s factors and resolution at least IV if and only if the S consists of the first (or last) s columns of $F_{q r}\left(\right.$ or $\left.T_{r}\right)$ with Yates order, i.e., the S is any one of the four isomorphic constitutions.

For simplicity of statements hereafter, we will use some phrases to imply their complete expressions. For example, when we say that a design "sequentially maximizes (or minimizes) the components of" some sequence, we will simply say "maximizes"
(or "minimizes") some sequence; " $\bar{g}(S)$ is minimized in all the designs with s factors" will be simply said as " $\bar{g}(S)$ is minimized"; also, we will mostly omit "up to isomorphism", since in this paper the designs are considered to be same if they are isomorphic. The readers can know their meanings in their corresponding contexts.
3. Theory on constructing GMC $\mathbf{2}^{\boldsymbol{m - p}}$ designs. In this section, let D be a 2^{m-p} design. Since the theoretic deductions of constructing GMC 2^{m-p} designs for the two cases $5 n / 16+1 \leq m<n / 2$ and $m \geq n / 2$ are different, in the following we use two subsections separately to discuss them.
3.1. GMC 2^{m-p} designs with $5 n / 16+1 \leq m \leq n / 2$. According to Theorem 1 in Zhang et al. (2008), obviously, if design D has GMC and $m \leq n / 2$ then its resolution must be at least $I V$. Note that any $2_{I V}^{m-p}$ design D with $5 n / 16+1 \leq m \leq n / 2$ satisfies $D \subset F_{q q}$, see Bruen et al. (1998) and Butler (2007). Clearly, the number of factors in $F_{q q} \backslash D$ is less than that of D.

To study the construction of GMC designs, let us investigate the relationships between the AENP of D and that of $F_{q q} \backslash D$ first. We have the following.

Lemma 1. Let $D \subset F_{q q}$ be a 2^{m-p} design. Then
(a) $B_{2}(D, \gamma)=\left\{\begin{array}{ll}0, & \text { if } \gamma \in F_{q q}, \\ B_{2}(F\end{array}\right)$
(b) ${ }_{1}^{\#} C_{2}^{(k)}(D)= \begin{cases}m, & \text { if } k=0, \\ 0, & \text { if } k \geq 1,\end{cases}$
(c) ${ }_{2}^{\#} C_{2}^{(k)}(D)=\left\{\begin{array}{l}0, \\ -(k+1) \bar{g}\left(F_{q q} \backslash D\right)+(k+1)(n / 2-1), \\ \quad \text { if } k<m-n / 4-1, \\ (k+1) /\{k+1-(m-n / 4)\}_{2}^{\#} C_{2}^{(k-m+n / 4)}\left(F_{q q} \backslash D\right), \\ \text { if } k \geq m-n / 4,\end{array}\right.$

Proof. For (a). The first part of (a) is obvious due to the structure of $F_{q q}$. For any $\gamma \in H_{q-1}$, there are $n / 4$ pairs factors in $F_{q q}$ whose interactions are aliased with γ. Among them $B_{2}(D, \gamma)$ pairs come from $D, B_{2}\left(F_{q q} \backslash D, \gamma\right)$ pairs come from $F_{q q} \backslash D$; and for the remaining pairs, one factor is from D and another one is from $F_{q q} \backslash D$. Therefore

$$
B_{2}(D, \gamma)+B_{2}\left(F_{q q} \backslash D, \gamma\right)+m-2 B_{2}(D, \gamma)=n / 4
$$

which is just the second equality of (a).
For (b). The result is obvious due to the structure of $F_{q q}$.
For (c). From the definition of ${ }_{2}^{\#} C_{2}^{(k)}(D)$ and the result of (a), we have

$$
\begin{aligned}
{ }_{2}^{\#} C_{2}^{(k)}(D) & =(k+1) \#\left\{\gamma \in H_{q}, B_{2}(D, \gamma)=k+1\right\} \\
& =(k+1) \#\left\{\gamma \in H_{q-1}, B_{2}\left(F_{q q} \backslash D, \gamma\right)=k+1-(m-n / 4)\right\}
\end{aligned}
$$

Thus the first and third equalities in (c) follow directly from the above equation and the definition of ${ }_{2}^{\#} C_{2}^{(k)}\left(F_{q q} \backslash D\right)$. As for the second one, when $k=m-n / 4-1$, by (a) and $\#\left\{H_{q-1}\right\}=n / 2-1$ we have

$$
\begin{aligned}
{ }_{2}^{\#} C_{2}^{(k)}(D) & =(k+1) \#\left\{\gamma \in H_{q-1}, B_{2}\left(F_{q q} \backslash D, \gamma\right)=0\right\} \\
& =(k+1)(n / 2-1)-(k+1) \#\left\{\gamma \in H_{q-1}, B_{2}\left(F_{q q} \backslash D, \gamma\right)>0\right\} \\
& =(k+1)(n / 2-1)-(k+1) \#\left\{\gamma \in H_{q} \backslash\left(F_{q q} \backslash D\right), B_{2}\left(F_{q q} \backslash D, \gamma\right)>0\right\} \\
& =(k+1)(n / 2-1)-(k+1) \bar{g}\left(F_{q q} \backslash D\right) .
\end{aligned}
$$

Then the second equality in (c) follows.
Obviously, the above lemma yields the following lemma, which can be easily used to construct GMC designs when the number of factors in $F_{q q} \backslash D$ is small.

Lemma 2. Suppose D is a 2^{m-p} design with $5 n / 16+1 \leq m \leq n / 2$. The design D has $G M C$ if $D \subset F_{q q}$ and it uniquely maximizes

$$
\begin{equation*}
\left\{-\bar{g}\left(F_{q q} \backslash D\right),{ }_{2}^{\#} C_{2}\left(F_{q q} \backslash D\right)\right\} . \tag{3.1}
\end{equation*}
$$

Combining Lemma 2 and Part (c) of Theorem 1, we can get the following valuable result.

Theorem 2. Suppose the columns in H_{q} and $F_{q q}$ are written in Yates order. For $5 n / 16+1 \leq m \leq n / 2$, the GMC 2^{m-p} design is just the design that consists of the last m columns in H_{q} or $F_{q q}$.

Proof. Suppose $2^{r-2}+1 \leq n / 2-m \leq 2^{r-1}$ for some r. Letting $S=F_{q q} \backslash D$, $s=n / 2-m$ and applying Part (c) of Theorem 1, the design $F_{q q} \backslash D$ consisting of the first $n / 2-m$ columns of $F_{q r}$ will uniquely maximize the sequence (3.1). When H_{q} and $F_{q q}$ are written in Yates order, the first $n / 2-m$ columns of $F_{q r}$ are also the first $n / 2-m$ columns of $F_{q q}$. Hence the GMC design D consists of the last m columns of $F_{q q}$. Noting that the last m columns of $F_{q q}$ are just the last m columns of H_{q}, then the result follows directly.

To illustrate the construction method in Theorem 2, let us see the following example.

Example 1. Suppose that we need to get a GMC design with $m=n / 2-5$ factors, where n can be 32,64 , or 2048 whatever as long as $5 n / 16+1 \leq m \leq n / 2$. Let us take a saturated resolution $I V$ design $F_{q 4}$ with Yates order, which has 4 (4 is enough since $2^{4-1} \geq 5$) independent factors. The $F_{q 4}$ can be written as

$$
F_{q 4}=\{q, 1 q, 2 q, 12 q, 3 q, 13 q, 23 q, 123 q\} .
$$

According to Theorem 2, when $n / 2-m=5$,

$$
D=F_{q q} \backslash\{q, 1 q, 2 q, 12 q, 3 q\}
$$

is just a GMC design. Especially, if $n=32$, then $m=11$ and the GMC design $D=\{135,235,1235,45,145,245,1245,345,1345,2345,12345\}$.

If $m=n / 2-10$ and $n \geq 64$, we need to take a saturated resolution $I V$ design with 5 independent factors $F_{q 5}$ with Yates order, which can be written as

$$
\begin{aligned}
F_{q 5}= & \{q, 1 q, 2 q, 12 q, 3 q, 13 q, 23 q, 123 q \\
& 4 q, 14 q, 24 q, 124 q, 34 q, 134 q, 234 q, 1234 q\}
\end{aligned}
$$

Then, according to Theorem 2 , since $n / 2-m=10$, we get that

$$
D=F_{q q} \backslash\{q, 1 q, 2 q, 12 q, 3 q, 13 q, 23 q, 123 q, 4 q, 14 q\}
$$

is just a GMC design.
3.2. GMC 2^{m-p} designs with $m \geq n / 2$. When $m \geq n / 2$, Zhang and Mukerjee (2008) found that if D has GMC then $\bar{g}\left(H_{q} \backslash D\right)$ is minimized. According to Part (a) of Theorem 1, when $2^{r-1} \leq n-1-m \leq 2^{r}-1$ for some $r, H_{q} \backslash D$ has r independent factors. Therefore $H_{q} \backslash D \subset H_{r}$ and $S_{q r} \subset D$, where $S_{q r}$ is defined in Section 2. When the number of factors in $D \backslash S_{q r}$ is small, it will be convenient for us to construct GMC designs based on $D \backslash S_{q r}$. Hence the relationship between the AENPs of D and $D \backslash S_{q r}$ will be very helpful. The next lemma first studies the connection between $B_{2}(D, \gamma)$ and $B_{2}\left(D \backslash S_{q r}, \gamma\right)$.

Lemma 3. Suppose D is a 2^{m-p} design with $S_{q r} \subset D$. Then
(a) if $\gamma \in S_{q r}, B_{2}(D, \gamma)=m-n / 2$;
(b) if $\gamma \in H_{r}, B_{2}(D, \gamma)=B_{2}\left(D \backslash S_{q r}, \gamma\right)+n / 2-2^{r-1}$.

Proof. For (a). From the structure of $S_{q r}$, we have for any $\gamma \in S_{q r}$,

$$
\begin{aligned}
B_{2}(D, \gamma)= & \#\left\{\left(d_{1}, d_{2}\right): \gamma=d_{1} d_{2}, d_{1} \in D \backslash S_{q r}, d_{2} \in S_{q r}\right\} \\
& +\#\left\{\left(d_{1}, d_{2}\right): \gamma=d_{1} d_{2}, d_{1} \in S_{q r}, d_{2} \in S_{q r}\right\}
\end{aligned}
$$

For any $d_{1} \in D \backslash S_{q r}$, we can uniquely determine $d_{2}=d_{1} \gamma$ in $S_{q r}$. So

$$
\#\left\{\left(d_{1}, d_{2}\right): \gamma=d_{1} d_{2}, d_{1} \in D \backslash S_{q r}, d_{2} \in S_{q r}\right\}=m-\left(n-2^{r}\right)
$$

Note that for any $\gamma \in S_{q r}$, there are $n / 2-1$ pairs factors in H_{q} whose interactions are aliased with γ. Among them, there are $2^{r}-1$ pairs with one factor from H_{r} and another one from $S_{q r}$; for the remaining $n / 2-2^{r}$ pairs, both factors are from $S_{q r}$. Therefore

$$
\#\left\{\left(d_{1}, d_{2}\right): \gamma=d_{1} d_{2}, d_{1} \in S_{q r}, d_{2} \in S_{q r}\right\}=n / 2-2^{r}
$$

and

$$
B_{2}(D, \gamma)=m-\left(n-2^{r}\right)+n / 2-2^{r}=m-n / 2 .
$$

Then the result in (a) follows.
For (b). For any $\gamma \in H_{r}$, we have

$$
\begin{aligned}
B_{2}(D, \gamma)= & \#\left\{\left(d_{1}, d_{2}\right): \gamma=d_{1} d_{2}, d_{1} \in D \backslash S_{q r}, d_{2} \in D \backslash S_{q r}\right\} \\
& +\#\left\{\left(d_{1}, d_{2}\right): \gamma=d_{1} d_{2}, d_{1} \in S_{q r}, d_{2} \in S_{q r}\right\} \\
= & B_{2}\left(D \backslash S_{q r}, \gamma\right)+\#\left\{\left(d_{1}, d_{2}\right): \gamma=d_{1} d_{2}, d_{1} \in S_{q r}, d_{2} \in S_{q r}\right\}
\end{aligned}
$$

where the second equality is from the definition of $B_{2}\left(D \backslash S_{q r}, \gamma\right)$. Note that for any $\gamma \in H_{r}$, there are $n / 2-1$ pairs factors in H_{q} whose interactions are aliased with γ. Among them, there are $\left(2^{r}-2\right) / 2=2^{r-1}-1$ pairs from H_{r} and $n / 2-2^{r-1}$ pairs from $S_{q r}$. Hence

$$
\#\left\{\left(d_{1}, d_{2}\right): \gamma=d_{1} d_{2}, d_{1} \in S_{q r}, d_{2} \in S_{q r}\right\}=n / 2-2^{r-1}
$$

and

$$
B_{2}(D, \gamma)=B_{2}\left(D \backslash S_{q r}, \gamma\right)+n / 2-2^{r-1}
$$

This finishes the proof of (b).
The above lemma can be applied to yield the expressions of the leading terms of AENP of a design $D \supset S_{q r}$ for some r, shown in the lemma below, in terms of that of the design $D \backslash S_{q r}$.

Lemma 4. Suppose $D=\left\{S_{q r}, D \backslash S_{q r}\right\}$. Then
(a) ${ }_{1}^{\#} C_{2}^{(k)}(D)= \begin{cases}\text { constant, } & \text { if } k<n / 2-2^{r-1}, \\ { }_{1}^{\#} C_{2}^{\left(k-n / 2+2^{r-1}\right)}\left(D \backslash S_{q r}\right)+\text { constant, }, & \text { if } k \geq n / 2-2^{r-1},\end{cases}$
(b) ${ }_{2}^{\#} C_{2}^{(k)}(D)= \begin{cases}\text { constant }, & \text { if } k<n / 2-2^{r-1}-1, \\ -(k+1) \bar{g}\left(D \backslash S_{q r}\right)+(k+1)_{1}^{\#} C_{2}^{(0)}\left(D \backslash S_{q r}\right) \\ + \text { constant }, & \text { if } k=n / 2-2^{r-1}-1, \\ \begin{array}{ll}k+1) /\left(k-n / 2+2^{r-1}+1\right)_{2}^{\#} C_{2}^{\left(k-n / 2+2^{r-1}\right)}\left(D \backslash S_{q r}\right) \\ + \text { constant }, & \text { if } k \geq n / 2-2^{r-1},\end{array}\end{cases}$
where the constant's are non-negative values only depending on m, k and n.
Proof. For (a). From the definition of ${ }_{1}^{\#} C_{2}^{(k)}(D)$, we have

$$
\begin{aligned}
{ }_{1}^{\#} C_{2}^{(k)}(D)= & \#\left\{\gamma: \gamma \in S_{q r}, B_{2}(D, \gamma)=k\right\} \\
& +\#\left\{\gamma: \gamma \in D \backslash S_{q r}, B_{2}(D, \gamma)=k\right\}
\end{aligned}
$$

From Parts (a) and (b) of Lemma 3, we get that

$$
\begin{aligned}
{ }_{1}^{\#} C_{2}^{(k)}(D)= & I(m-n / 2=k) \times\left(n-2^{r}\right) \\
& +\#\left\{\gamma: \gamma \in D \backslash S_{q r}, B_{2}\left(D \backslash S_{q r}, \gamma\right)+n / 2-2^{r-1}=k\right\}
\end{aligned}
$$

where $I(\cdot)$ is the indicator function. Part (a) follows directly.
For (b). By the definition of ${ }_{2}^{\#} C_{2}^{(k)}(D)$, we have

$$
\begin{aligned}
{ }_{2}^{\#} C_{2}^{(k)}(D)= & (k+1) \#\left\{\gamma: \gamma \in S_{q r}, B_{2}(D, \gamma)=k+1\right\} \\
& +(k+1) \#\left\{\gamma: \gamma \in H_{r}, B_{2}(D, \gamma)=k+1\right\}
\end{aligned}
$$

Using Parts (a) and (b) of Lemma 3, the above equation reduces to

$$
\begin{aligned}
{ }_{2}^{\#} C_{2}^{(k)}(D)= & I(m-n / 2=k+1) \times(k+1)\left(n-2^{r}\right) \\
& +(k+1) \#\left\{\gamma: \gamma \in H_{r}, B_{2}\left(D \backslash S_{q r}, \gamma\right)=k+1-n / 2+2^{r-1}\right\}
\end{aligned}
$$

The first and third equalities of (b) follow directly from the above equation and the definition of ${ }_{2}^{\#} C_{2}^{(k)}\left(D \backslash S_{n r}\right)$.

For the second equality of (b), when $k=n / 2-2^{r-1}-1$, we have

$$
\begin{aligned}
{ }_{2}^{\#} C_{2}^{(k)}(D)= & (k+1) \#\left\{\gamma: \gamma \in H_{r}, B_{2}\left(D \backslash S_{q r}, \gamma\right)=0\right\}+\text { constant } \\
= & (k+1) \#\left\{\gamma: \gamma \in D \backslash S_{q r}, B_{2}\left(D \backslash S_{q r}, \gamma\right)=0\right\} \\
& +(k+1) \#\left\{\gamma: \gamma \in H_{q} \backslash D, B_{2}\left(D \backslash S_{q r}, \gamma\right)=0\right\}+\text { constant. }
\end{aligned}
$$

Note that from the definitions of ${ }_{1}^{\#} C_{2}^{(k)}\left(D \backslash S_{q r}\right)$ and $\bar{g}(\cdot)$ in (2.3), we have

$$
\#\left\{\gamma: \gamma \in D \backslash S_{q r}, B_{2}\left(D \backslash S_{q r}, \gamma\right)=0\right\}={ }_{1}^{\#} C_{2}^{(0)}\left(D \backslash S_{q r}\right)
$$

and

$$
\begin{aligned}
\#\{\gamma & \left.: \gamma \in H_{q} \backslash D, B_{2}\left(D \backslash S_{q r}, \gamma\right)=0\right\} \\
& =(n-1-m)-\#\left\{\gamma: \gamma \in H_{q} \backslash D, B_{2}\left(D \backslash S_{q r}, \gamma\right)>0\right\} \\
& =(n-1-m)-\#\left\{\gamma: \gamma \in S_{q r} \cup\left(H_{q} \backslash D\right), B_{2}\left(D \backslash S_{q r}, \gamma\right)>0\right\} \\
& =(n-1-m)-\#\left\{\gamma: \gamma \in H_{q} \backslash\left(D \backslash S_{q r}\right), B_{2}\left(D \backslash S_{q r}, \gamma\right)>0\right\} \\
& =(n-1-m)-\bar{g}\left(D \backslash S_{q r}\right) .
\end{aligned}
$$

The second equality above is from the structures of $S_{q r}$ and $D \backslash S_{q r}$. Then the second equality of (b) follows directly.

The following lemma immediately follows from the above lemma, which can be easily used to construct GMC designs when the number of factors in $D \backslash S_{q r}$ is small.

LEMMA 5. Suppose D is a 2^{m-p} design with $2^{r-1} \leq n-1-m \leq 2^{r}-1$ for some $r \leq q-1$. The design D has $G M C$ if $S_{q r} \subset D$ and it is unique one that maximizes

$$
\begin{equation*}
\left\{{ }_{1}^{\#} C_{2}\left(D \backslash S_{q r}\right),-\bar{g}\left(D \backslash S_{q r}\right),{ }_{2}^{\#} C_{2}\left(D \backslash S_{q r}\right)\right\} . \tag{3.2}
\end{equation*}
$$

When $2^{r-1} \leq n-1-m \leq 2^{r}-1$, there are r independent factors in H_{r} and $m+2^{r}-n\left(<2^{r-1}\right)$ factors in $D \backslash S_{n r}$. So we can find a design with resolution at least $I V$ and $m+2^{r}-n$ factors in H_{r}. Note that ${ }_{1}^{\#} C_{2}\left(D \backslash S_{q r}\right)$ is maximized if $D \backslash S_{n r}$ has resolution at least $I V$. The next two terms after ${ }_{1}^{\#} C_{2}\left(D \backslash S_{q r}\right)$ are $-\bar{g}\left(D \backslash S_{q r}\right)$ and ${ }_{2}^{\#} C_{2}\left(D \backslash S_{q r}\right\}$. Applying Part (c) of Theorem 1, we get a result similar to Theorem 2.

Theorem 3. Suppose the columns in H_{q} are written in Yates order. For $m \geq$ $n / 2$, the GMC 2^{m-p} design is just the design that consists of the last m columns in H_{q}.

Proof. Suppose $2^{r-1} \leq n-1-m \leq 2^{r}-1$ for some $r \leq q-1$ and $S_{q r} \subset D$. Let $f_{r}=m+2^{r}-n$, which is the number of columns in $D \backslash S_{q r}$. Then $0 \leq f_{r} \leq 2^{r-1}-1$.

When $f_{r}=0$ or 1 , then $D=S_{q r}$ or $S_{q r} \cup\{12 \cdots r\}$, the result is obvious. Next consider $2^{l-2}+1 \leq f_{r} \leq 2^{l-1}$ for some $2 \leq l \leq r$. Letting $S=D \backslash S_{q r}, s=f_{r}$ and applying Part (c) of Theorem 1, we have that if $D \backslash S_{q r}$ consists of the first f_{r} columns of T_{l}, then $D \backslash S_{q r}$ uniquely maximizes the sequence (3.2). Here T_{l} is defined in Section 2. When H_{q} is written in Yates order, the design consisting of the first f_{r} columns of T_{l} is isomorphic to the one consisting of the first f_{r} columns of T_{r}. Note that Theorem 1 implies that the design consisting of the first f_{r} columns of T_{r} is isomorphic to the one consisting of the last f_{r} columns of T_{r} (see Part (c) of the theorem). Therefore, if $D \backslash S_{q r}$ consists of the last f_{r} columns of T_{r}, then $D \backslash S_{q r}$ uniquely maximizes the sequence (3.2) under isomorphism. Combining with $S_{q r}$, the design consisting of the last m columns of H_{q} has GMC.

Next let us use an example to illustrate the construction method in Theorem 3.
Example 2. Consider the case when $n-1-m=2^{r-1}+3$ with $r \geq 3$. According to Theorem 3, by deleting the first $2^{r-1}+3$ columns from H_{q}, the resulted design

$$
D=H_{q} \backslash\left(H_{r-1} \cup\{r, 1 r, 2 r, 12 r\}\right)
$$

is just a GMC design.
4. When a GMC design will be different from MA design. In this section we examine that under what parameters the GMC and MA designs are certainly different. Our results are shown in Theorems 4 and 5 below.

Theorem 4. Suppose $D \subset F_{q q}$ is a $2_{I V}^{m-p}$ design with $5 n / 16+1 \leq m \leq n / 2$. When $m \leq n / 2-4$, an MA design must not maximize ${ }_{2}^{\#} C_{2}(D)$ and hence any $G M C$ design differs from MA design.

Proof. When $5 n / 16+1 \leq m \leq n / 2$, Butler (2003) proved that if D is an MA design, then $D \subset F_{q q}$ and $F_{q q} \backslash D$ has MA among designs in $F_{q q}$. So the number of independent factors in $F_{q q} \backslash D$ is $\min (n / 2-m, q)$.

According to Part (c) of Lemma 1, if a design $D \subset F_{q q}$ and maximizes ${ }_{2}^{\#} C_{2}(D)$, then $\bar{g}\left(F_{q q} \backslash D\right)$ is minimized. Due to the structure of $F_{q q}$, the design $F_{q q} \backslash D$ has resolution at least $I V$. Applying Part (b) of Theorem 1, we get that the maximum number of independent factors in $F_{q q} \backslash D$ is at most $\left\lfloor\log _{2}(n / 2-m-1)\right\rfloor+2$, where $\lfloor x\rfloor$ denotes the largest integer which is smaller or equal to x. When $5 n / 16+1 \leq m \leq n / 2$,

$$
\left\lfloor\log _{2}(n / 2-m-1)\right\rfloor+2 \leq\left\lfloor\log _{2}(n / 2-5 n / 16-2)\right\rfloor+2=\left\lfloor\log _{2}(3 n / 16-2)\right\rfloor+2<q .
$$

Also when $m \leq n / 2-4,\left\lfloor\log _{2}(n / 2-m-1)\right\rfloor+2<n / 2-m$. Therefore, the number of independent factors in $F_{q q} \backslash D$ is less than $\min (n / 2-m, q)$ if D maximizes ${ }_{2}^{\#} C_{2}(D)$. Thus, the theorem follows from the above argument.

Similar to Theorem 4, we have the following theorem, which tells us that, when $m \geq n / 2$, on what parameter intervals, the GMC and MA designs are different.

Theorem 5. Suppose $2^{r-1} \leq n-1-m \leq 2^{r}-1$ for somer. When $4 \leq m+2^{r}-n \leq$ $2^{r-1}-4$ with $4 \leq r \leq q-1$, any GMC design differs from MA design.

Proof. When $m \geq n / 2$, using Lemma 4 of Chen and Hedayat (1996), Butler (2003) proved that if D is an MA design, then $F_{q q} \subset D$ and $D \backslash F_{q q}$ has MA among the designs in H_{q-1}. Repeatedly applying this result and Lemma 4 of Chen and Hedayat (1996), one can prove a stronger result that if D is an MA design, then $S_{q r} \subset D$ and $D \backslash S_{q r}$ has MA among the designs in H_{r}. So the number of independent factors in $D \backslash S_{q r}$ is $\min \left(m+2^{r}-n, r\right)$ if D has MA.

According to Lemma 5 and the discussion afore Theorem 3, if D has GMC, then $S_{q r} \subset D, D \backslash S_{q r}$ has resolution at least $I V$ and $\bar{g}\left(D \backslash S_{n r}\right)$ is minimized. By Part (b) of Theorem 1, the number of independent factors in $D \backslash S_{q r}$ is at most $\left\lfloor\log _{2}\left(m+2^{r}-\right.\right.$ $n-1)\rfloor+2$. When $4 \leq m+2^{r}-n \leq 2^{r-2}$ with $r \geq 4$, we can easily check that

$$
\left\lfloor\log _{2}\left(m+2^{r}-n-1\right)\right\rfloor+2<\min \left(m+2^{r}-n, r\right)
$$

and hence in this region every GMC design differs from MA design. When $2^{r-2}+1 \leq$ $m+2^{r}-n \leq 2^{r-1}-4$ with $r \geq 5$, there are r independent factors in $D \backslash S_{q r}$ and $D \backslash S_{q r} \subset T_{r}$, see Part (b) of Theorem 1. By Lemma 1 (a) with q being taken as r and the condition $2^{r-2}+1 \leq m+2^{r}-n \leq 2^{r-1}-4$, for any $\gamma \in H_{r-1}$,

$$
B_{2}\left(D \backslash S_{q r}, \gamma\right)=B_{2}\left(T_{r} \backslash\left(D \backslash S_{q r}\right), \gamma\right)+m+2^{r}-n-2^{r-2} \geq 1
$$

and therefore $\bar{g}\left(D \backslash S_{q r}\right)=2^{r-1}-1$, which is a constant. So if D has GMC, then $D \backslash S_{q r} \subset T_{r}$ and it maximizes ${ }_{2}^{\#} C_{2}\left(D \backslash S_{q r}\right)$. Similarly to Theorem 4, we can prove that $D \backslash S_{q r}$ is not an MA design among designs in H_{r} and hence D differs from MA design.

Zhang and Mukerjee (2008) found that when $n-1-m=11$, the GMC and MA designs are different, which is the special case of Theorem 5 at $r=4$ to the moment.

[^2]
APPENDIX A: PROOFS OF THEOREM 1.

The global line of proving the theorem is that, firstly we prove Part (a) and then use the result of Part (a) to prove Part (b), finally use the result of Part (b) to prove Part (c).

Recall the notations $H_{r}, F_{q r}$ and T_{r} given in Section 2. For convenience of presentation below, we introduce the notation $Q_{1} \times Q_{2}=\left\{d_{1} d_{2}: d_{1} \in Q_{1}, d_{2} \in Q_{2}\right\}$, where $Q_{1}, Q_{2} \subset H_{q}$. Particularly, denote $d Q=\{d\} \times Q$ for $d \in H_{q}$ and $Q \subset H_{q}$.

Proof for Part (a) of Theorem 1

Note that, when $r=q$, Part (a) of the theorem is obviously valid, since any design S with s factors from H_{q}, satisfying $2^{q-1} \leq s \leq 2^{q}-1$, has exactly q independent factors and $S \subset H_{q}$. So, we only need to consider the case $r \leq q-1$.

We will use apagogical approach to prove the case. To carry out this point, in the following we first prove some general results.

Suppose that $S_{1} \subset H_{q}$ is a design with s factors, where $2^{r-1} \leq s \leq 2^{r}-1$ for some $r \leq q-1$, and has $h+1(r \leq h \leq q-1)$ independent factors. Let a denote the factor q. Under isomorphism, we can assume $a \in S_{1}$ and S_{1} can be represented as

$$
\begin{equation*}
S_{1}=Q \cup\left\{a, a b_{1}, a b_{2}, \ldots, a b_{l}\right\} \tag{A.1}
\end{equation*}
$$

where Q is a subset of H_{h} and has h independent factors, and $\left\{b_{1}, \ldots, b_{l}\right\} \subset H_{h}$. Without loss of generality, we assume that $\left\{b_{1}, \ldots, b_{t}\right\} \subset Q$ and $\left\{b_{t+1}, \ldots, b_{l}\right\} \subset$ $H_{h} \backslash Q$, and consider another set

$$
\begin{equation*}
S_{2}=Q \cup\left\{a, a b_{1}, \ldots, a b_{t}\right\} \cup\left\{b_{t+1}, \ldots, b_{l}\right\} . \tag{A.2}
\end{equation*}
$$

We have the following lemma.
Lemma 6. Suppose that S_{1} and S_{2} are defined in (A.1) and (A.2) respectively, then $\bar{g}\left(S_{2}\right) \leq \bar{g}\left(S_{1}\right)$.

Proof. Denote $Q_{1}=\left\{a, a b_{1}, a b_{2}, \ldots, a b_{t}\right\}$ and $Q_{2}=\left\{a b_{t+1}, \ldots, a b_{l}\right\}$. Then we have $S_{1}=Q \cup Q_{1} \cup Q_{2}$ and $S_{2}=Q \cup Q_{1} \cup a Q_{2}$. Let $P=H_{q} \backslash\left(S_{1} \cup S_{2}\right)$, where $S_{1} \cup S_{2}=Q \cup Q_{1} \cup Q_{2} \cup a Q_{2}$ in which the four sets are mutually exclusive. According to the definitions of $\bar{g}\left(S_{1}\right)$ and $\bar{g}\left(S_{2}\right)$, we easily get

$$
\begin{aligned}
\bar{g}\left(S_{1}\right)= & \#\left\{\gamma: \gamma \in P, B_{2}\left(S_{1}, \gamma\right)>0\right\} \\
& +\#\left\{\gamma: \gamma \in a Q_{2}, B_{2}\left(S_{1}, \gamma\right)>0\right\} \triangleq g_{11}+g_{12}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{g}\left(S_{2}\right)= & \#\left\{\gamma: \gamma \in P, B_{2}\left(S_{2}, \gamma\right)>0\right\} \\
& +\#\left\{\gamma: \gamma \in Q_{2}, B_{2}\left(S_{2}, \gamma\right)>0\right\} \triangleq g_{21}+g_{22} .
\end{aligned}
$$

For any $\gamma \in Q_{2}, \gamma=a(a \gamma)$, where $a \in Q_{1} \subset S_{2}$ and $a \gamma \in a Q_{2} \subset S_{2}$, we have $B_{2}\left(S_{2}, \gamma\right)>0$. From the definition of g_{22}, we get $g_{22}=\#\left\{Q_{2}\right\}$. Similarly, $g_{12}=$ $\#\left\{a Q_{2}\right\}$ follows. It is easy to check that $\#\left\{Q_{2}\right\}=\#\left\{a Q_{2}\right\}$, which leads to $g_{12}=g_{22}$.

Now we pick-up the three sets:

$$
\begin{aligned}
& P_{1}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{1}, \gamma\right)>0 \text { and } B_{2}\left(S_{2}, \gamma\right)>0\right\}, \\
& P_{2}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{1}, \gamma\right)>0 \text { and } B_{2}\left(S_{2}, \gamma\right)=0\right\}, \text { and } \\
& P_{3}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{1}, \gamma\right)=0 \text { and } B_{2}\left(S_{2}, \gamma\right)>0\right\} .
\end{aligned}
$$

Clearly, P_{1}, P_{2} and P_{3} are mutually exclusive and we have $g_{11}=\#\left\{P_{1}\right\}+\#\left\{P_{2}\right\}$ and $g_{21}=\#\left\{P_{1}\right\}+\#\left\{P_{3}\right\}$. So, to finish the proof, it suffices to show the result $\#\left\{P_{2}\right\} \geq \#\left\{P_{3}\right\}$ or a stronger result: if $\gamma \in P_{3}$ then $a \gamma \in P_{2}$.

To do this, we note that, if $\gamma \in P_{3}$, then γ must not be an interaction of any two factors in $Q \cup Q_{1} \cup Q_{2}$ but an interaction of some two factors in $Q \cup Q_{1} \cup a Q_{2}$. Therefore, γ must be an interaction of two factors with one coming from $a Q_{2}$ and the other coming from Q or Q_{1}. If $\gamma \in a Q_{2} \times Q_{1}=Q_{2} \times a Q_{1} \subset Q_{2} \cup\left(Q_{2} \times Q\right)$ or $\gamma \in a Q_{2} \times\left\{b_{1}, \ldots, b_{t}\right\}=Q_{2} \times\left\{a b_{1}, \ldots, a b_{t}\right\} \subset Q_{2} \times Q_{1}$, where $\left\{b_{1}, \ldots, b_{t}\right\} \subset Q$, then $\gamma \notin P$ or $B_{2}\left(S_{1}, \gamma\right)>0$, which contradicts the assumption $\gamma \in P_{3}$. So, it must be to have $\gamma \in a Q_{2} \times\left(Q \backslash\left\{b_{1}, \ldots, b_{t}\right\}\right) \subset H_{h}$. Because of this, we have $a \gamma \in$ $Q_{2} \times\left(Q \backslash\left\{b_{1}, \ldots, b_{t}\right\}\right)$, which implies $B_{2}\left(S_{1}, a \gamma\right)>0$. The remainder is to prove that, for the $a \gamma$, we have $a \gamma \in P$ and $B_{2}\left(S_{2}, a \gamma\right)=0$. For the former, it is easy to be validated. We only show $B_{2}\left(S_{2}, a \gamma\right)=0$ below.

We use the reduction to absurdity to prove the point. Suppose $B_{2}\left(S_{2}, a \gamma\right)>0$. Since $\gamma \in H_{h}$, we have $a \gamma \in a H_{h}$ and $a \gamma \in Q_{1} \times\left(Q \cup a Q_{2}\right)$. Thus, there are only the following two possibilities: $a \gamma \in Q_{1} \times Q$ or $a \gamma \in Q_{1} \times a Q_{2}$. However, if $a \gamma \in Q_{1} \times Q$, then $\gamma \in a Q_{1} \times Q \subset Q \cup(Q \times Q)$, or if $a \gamma \in Q_{1} \times a Q_{2}$, then $\gamma \in Q_{1} \times Q_{2}$. Any one of the two cases implies that $\gamma \notin P$ or $B_{2}\left(S_{1}, \gamma\right)>0$, which contradicts the assumption $\gamma \in P_{3}$. Lemma 6 is proved.

Lemma 6 indicates that, if the design S_{1} is transformed into the design S_{2}, i.e. the elements $a b_{t+1}, \ldots, a b_{l}$ in S_{1}, which are out of H_{h}, are substituted by the elements b_{t+1}, \ldots, b_{l}, which are in H_{h}, then $\bar{g}\left(S_{2}\right) \leq \bar{g}\left(S_{1}\right)$.

In the following study, we join Q and $a Q_{2}$ together and still denote it by Q. Without loss of generality, we assume that S_{2} has the form

$$
\begin{equation*}
S_{2}=Q \cup\left\{a, a b_{1}, \ldots, a b_{t}\right\}, \tag{A.3}
\end{equation*}
$$

where $Q \subset H_{h}$ and has h independent factors, and $\left\{b_{1}, \ldots, b_{t}\right\} \subset Q$. When $2^{r-1} \leq$ $s \leq 2^{r}-1$, the number of factors in Q is smaller than $2^{r}-1$. Therefore there are at least two factors c_{1} and c_{2} in Q such that $c=c_{1} c_{2} \notin Q$. Under isomorphism, we can assume that there is some t_{0} such that

$$
\left\{c, c b_{1}, c b_{2}, \ldots, c b_{t_{0}}\right\} \subset H_{h} \backslash Q \text { and }\left\{c b_{t_{0}+1}, \ldots, c b_{t}\right\} \subset Q .
$$

Denote

$$
\begin{equation*}
S_{3}=Q \cup\left\{c, c b_{1}, c b_{2}, \ldots, c b_{t_{0}}\right\} \cup\left\{a b_{t_{0}+1}, \ldots, a b_{t}\right\} \tag{A.4}
\end{equation*}
$$

We have one more result as follows.
Lemma 7. Suppose that S_{2} and S_{3} are defined in (A.3) and (A.4) respectively. Then $\bar{g}\left(S_{3}\right) \leq \bar{g}\left(S_{2}\right)$. Especially, if $t_{0}=t$ the strict inequality $\bar{g}\left(S_{3}\right)<\bar{g}\left(S_{2}\right)$ is valid.

Proof. Let $Q_{1}=\left\{a, a b_{1}, a b_{2}, \ldots, a b_{t_{0}}\right\}$ and $Q_{2}=\left\{a b_{t_{0}+1}, \ldots, a b_{t}\right\}$. Then $S_{2}=$ $Q \cup Q_{1} \cup Q_{2}$ and $S_{3}=Q \cup a c Q_{1} \cup Q_{2}$. Also denote $P=H_{q} \backslash\left(S_{2} \cup S_{3}\right)$, where $S_{2} \cup S_{3}=Q \cup Q_{1} \cup a c Q_{1} \cup Q_{2}$ in which the four parts are mutually exclusive. According to the definitions of $\bar{g}\left(S_{2}\right)$ and $\bar{g}\left(S_{3}\right)$, we have

$$
\begin{aligned}
\bar{g}\left(S_{2}\right)= & \#\left\{\gamma: \gamma \in P, B_{2}\left(S_{2}, \gamma\right)>0\right\} \\
& +\#\left\{\gamma: \gamma \in a c Q_{1}, B_{2}\left(S_{2}, \gamma\right)>0\right\} \triangleq g_{21}+g_{22}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{g}\left(S_{3}\right)= & \#\left\{\gamma: \gamma \in P, B_{2}\left(S_{3}, \gamma\right)>0\right\} \\
& +\#\left\{\gamma: \gamma \in Q_{1}, B_{2}\left(S_{3}, \gamma\right)>0\right\} \triangleq g_{31}+g_{32}
\end{aligned}
$$

Now let

$$
\begin{aligned}
& P_{1}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{2}, \gamma\right)>0 \text { and } B_{2}\left(S_{3}, \gamma\right)>0\right\} \\
& P_{2}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{2}, \gamma\right)>0 \text { and } B_{2}\left(S_{3}, \gamma\right)=0\right\}, \text { and } \\
& P_{3}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{2}, \gamma\right)=0 \text { and } B_{2}\left(S_{3}, \gamma\right)>0\right\}
\end{aligned}
$$

Then, P_{1}, P_{2} and P_{3} are mutually exclusive, $g_{21}=\#\left\{P_{1}\right\}+\#\left\{P_{2}\right\}$, and $g_{31}=$ $\#\left\{P_{1}\right\}+\#\left\{P_{3}\right\}$.

If $t_{0}=t$, then $Q_{2}=\emptyset$, the empty set, and $S_{3} \subset H_{h}$. As a result, for any $\gamma \in Q_{1}$, we have $B_{2}\left(S_{3}, \gamma\right)=0$ and hence $g_{32}=0$. On the other hand, because there is $c \in a c Q_{1}$ such that $B_{2}\left(S_{2}, c\right)>0$, it leads to $g_{22} \geq 1$. Thus, to prove $\bar{g}\left(S_{3}\right)<\bar{g}\left(S_{2}\right)$, it suffices to show that $\#\left\{P_{2}\right\} \geq \#\left\{P_{3}\right\}$ or a stronger result: if $\gamma \in P_{3}$ then $a c \gamma \in P_{2}$. By the same argument as in proving Lemma 6, it is easy to know that if $\gamma \in P_{3}$ then $\gamma \in a c Q_{1} \times Q \subset H_{h}$. From this, it directly follows that $a c \gamma \in Q_{1} \times Q$, then it is easy to verify $B_{2}\left(S_{2}, a c \gamma\right)>0$ and $a c \gamma \in P$. Note that, $B_{2}\left(S_{3}, a c \gamma\right)=0$ is straightforward since $S_{3} \subset H_{h}$ and $a c \gamma \notin H_{h}$. In this way, the second half result of Lemma 7 follows.

In the following let us consider the case $t_{0}<t$. Actually the proof for this case is very similar to that for $t_{0}=t$. It only needs one more condition $a c Q_{2} \subset Q$, however it is just a simple fact from the definition of S_{3}.

To make it clear, let us take two steps. Firstly, we show the fact: for any $\gamma \in Q_{1}$, if $B_{2}\left(S_{3}, \gamma\right)>0$ then $B_{2}\left(S_{2}, a c \gamma\right)>0$ and hence $g_{32} \leq g_{22}$.

Note that, if $\gamma \in Q_{1}$ and $B_{2}\left(S_{3}, \gamma\right)>0$, then $\gamma \in Q_{2} \times\left(Q \cup a c Q_{1}\right)$. Based on this, the above fact immediately follows, since we have that, if $\gamma \in Q_{2} \times Q$ then $a c \gamma \in a c Q_{2} \times Q \subset Q \times Q$, or if $\gamma \in Q_{2} \times a c Q_{1}$ then $a c \gamma \in Q_{2} \times Q_{1}$, both lead to $B_{2}\left(S_{2}, a c \gamma\right)>0$.

[^3]Next, let us show the fact: for any $\gamma \in P_{3}$, then $a c \gamma \in P_{2}$ and hence $g_{31} \leq g_{21}$.
Again, note that for any $\gamma \in P_{3}$ we have $\gamma \in a c Q_{1} \times\left(Q \cup Q_{2}\right)$. From this, we can first conclude $\gamma \notin a c Q_{1} \times Q_{2}=Q_{1} \times a c Q_{2} \subset Q_{1} \times Q$, it is because if not then $B_{2}\left(S_{2}, \gamma\right)>0$, but under given $\gamma \in P_{3}$ it is impossible. So, it must be to have $\gamma \in a c Q_{1} \times Q \subset H_{h}$. On the other hand, it is easy to validate $a c \gamma \in P$ and $a c \gamma \in Q_{1} \times Q$, or more precisely, $B_{2}\left(S_{2}, a c \gamma\right)>0$. Therefore, it is sufficient to show $B_{2}\left(S_{3}, a c \gamma\right)=0$.

We use the reduction to absurdity to prove the point above. Suppose $B_{2}\left(S_{3}, a c \gamma\right)>$ 0 . Since $\gamma \in H_{h}$ and $a c \gamma \in P$, we have $a c \gamma \in a H_{h}$ and $a c \gamma \in Q_{2} \times\left(Q \cup a c Q_{1}\right)$, which yields $a c \gamma \in Q_{2} \times Q$ or $a c \gamma \in Q_{2} \times a c Q_{1}$. However, if $a c \gamma \in Q_{2} \times Q$ then $\gamma \in a c Q_{2} \times Q \subset Q \times Q$, or if $a c \gamma \in Q_{2} \times a c Q_{1}$ then $\gamma \in Q_{2} \times Q_{1}$. Both cases lead to $B_{2}\left(S_{2}, \gamma\right)>0$, contradicting the assumption $\gamma \in P_{3}$.

From the above two steps, the two inequalities $g_{31} \leq g_{21}$ and $g_{32} \leq g_{22}$ are proved and hence we get $\bar{g}\left(S_{3}\right) \leq \bar{g}\left(S_{2}\right)$.

Lemma 7 tells us that, when we substitute design S_{2} by design S_{3}, i.e. the elements $a, a b_{1}, \ldots, a b_{t_{0}}$ in design S_{2}, which are out of H_{h}, are substituted by the elements $c, c b_{1}, \ldots, c b_{t_{0}}$, which are in H_{h}, the $\bar{g}(\cdot)$ value will be reduced. Especially, this procedure can continuously go on till that $t_{0}=t$, i.e. $S_{3} \subset H_{h}$, then S_{3} has h independent factors and $\bar{g}\left(S_{3}\right)<\bar{g}\left(S_{2}\right)$. If $h>r$, applying Lemma 6 to go the procedure in Lemma 6 but the H_{h-1} in this case has one less independent factor than the previous one. We can repeatedly and alternately go through the procedures of Lemmas 6 and 7 till we construct a design $S_{3}^{*} \subset H_{r}$. Then $\bar{g}\left(S_{3}^{*}\right)<\bar{g}\left(S_{3}\right)$ and S_{3}^{*} has exact r independent factors.

Now, let us return to the proof of Part (a) for the case $r \leq q-1$.
Suppose that S is a design with $2^{r-1} \leq s \leq 2^{r}-1$ factors and $\bar{g}(S)$ is minimized. Obviously, the S has at least r independent factors. If the S has $h(>r)$ independent factors, just like the statement in the paragraph after the proof of Lemma 7, we can construct a design S^{*} such that $\bar{g}\left(S^{*}\right)<\bar{g}(S)$ which contradicts the condition that $\bar{g}(S)$ is minimized. Therefore the S exactly has r independent factors. Noting that $S \subset H_{r}$ is obvious, the proof of (a) is then completed.

Proof for Part (b) of Theorem 1

To prove Part (b) of Theorem 1, we need two more lemmas in the following.
Suppose that $S_{4} \subset H_{q}$ is a resolution $I V$ or higher design with s factors, where $2^{r-2}+1 \leq s \leq 2^{r-1}$. With a suitable relabelling, we can assume $a \in S_{4}$. If S_{4} has $h+1(r \leq h \leq q-1)$ independent factors, then S_{4} has the form

$$
\begin{equation*}
S_{4}=Q \cup\left\{a, a b_{1}, \ldots, a b_{t}\right\}, \tag{A.5}
\end{equation*}
$$

where $Q \subset H_{h}$ and has h independent factors, and $\left\{b_{1}, \ldots, b_{t}\right\} \subset H_{h}$. Since S_{4} has
resolution at least $I V, a Q$ and $\left\{a, a b_{1}, \ldots, a b_{t}\right\}$ are mutually exclusive. Let

$$
\begin{equation*}
S_{5}=a Q \cup\left\{a, a b_{1}, \ldots, a b_{t}\right\} . \tag{A.6}
\end{equation*}
$$

Then we have the following result.
Lemma 8. Suppose that S_{4} and S_{5} are defined in (A.5) and (A.6), respectively. Then $\bar{g}\left(S_{5}\right) \leq \bar{g}\left(S_{4}\right)$.

Proof. Let $Q_{1}=\left\{a, a b_{1}, \ldots, a b_{t}\right\}$, then $S_{4}=Q \cup Q_{1}$ and $S_{5}=a Q \cup Q_{1}$. From $S_{5} \subset\left\{a, a H_{h}\right\}$ and the definition of $\bar{g}\left(S_{5}\right)$, we have

$$
\bar{g}\left(S_{5}\right)=\#\left\{\gamma: \gamma \in H_{h}, B_{2}\left(S_{5}, \gamma\right)>0\right\} .
$$

So, by the definition of $\bar{g}\left(S_{4}\right)$, it suffices to prove that, if $\gamma \in H_{h}$ and $B_{2}\left(S_{5}, \gamma\right)>0$, then $B_{2}\left(S_{4}, \gamma\right)>0$ and $\gamma \notin S_{4}$ or $B_{2}\left(S_{4}, a \gamma\right)>0$ and $a \gamma \notin S_{4}$.

Remind that, if $\gamma \in H_{h}$ and $B_{2}\left(S_{5}, \gamma\right)>0$, then we have $\gamma \in a Q \times a Q$, or $\gamma \in Q_{1} \times Q_{1}$, or $\gamma \in a Q \times Q_{1}$. Since S_{4} has resolution at least $I V$, when $\gamma \in$ $a Q \times a Q(=Q \times Q)$ or $\gamma \in Q_{1} \times Q_{1}$, then $B_{2}\left(S_{4}, \gamma\right)>0$, which causes $\gamma \notin S_{4}$, and when $\gamma \in a Q \times Q_{1}$, then $a \gamma \in Q \times Q_{1}$ and $B_{2}\left(S_{4}, a \gamma\right)>0$, which causes $a \gamma \notin S_{4}$.

Lemma 8 tells us that, when we substitute design S_{4} by design S_{5}, i.e. the elements of part Q in design S_{4}, which is out of $F_{q h}$, are substituted by the elements $a Q$, which are in $F_{q h}$, the $\bar{g}(\cdot)$ value will be reduced.

The following lemma examines the structure of the design that has s factors, resolution $I V$ or higher, and r independent factors, where $2^{r-2}+1 \leq s \leq 2^{r-1}$.

Lemma 9. Let $S \subset H_{r}$ be a design having s factors and resolution IV or higher with $2^{r-2}+1 \leq s \leq 2^{r-1}$, in which there are r independent factors. Then, if $A_{i}(S)>0$ for some odd number i, it must have that $A_{5}(S)>0$.

Proof. Suppose i_{0} is the smallest odd number such that $A_{i_{0}}(S)>0$. Without loss of generality, we assume $b_{1} b_{2} \cdots b_{i_{0}}=I$, where $\left\{b_{1}, \ldots, b_{i_{0}}\right\} \subset S$ and I is the identity element.

Since S has resolution $I V$ or higher, we have $i_{0} \geq 5$. We use the reduction to absurdity to prove that surely $i_{0}=5$. Suppose $i_{0} \neq 5$, it implies $i_{0} \geq 7$, thus we can define the four sets

$$
\begin{aligned}
Q_{1} & =\left(b_{1} b_{2} b_{3}\right) \times\left(S \backslash\left\{b_{1}, \ldots, b_{i_{0}}\right\}\right), \\
Q_{2} & =\left(b_{1} b_{4} b_{5}\right) \times\left(S \backslash\left\{b_{1}, \ldots, b_{i_{0}}\right\}\right), \\
Q_{3} & =\left(b_{2} b_{4} b_{6}\right) \times\left(S \backslash\left\{b_{1}, \ldots, b_{i_{0}}\right\}\right) \text { and } \\
Q_{4} & =\left\{b_{j} b_{k}, 1 \leq j<k \leq i_{0}\right\} .
\end{aligned}
$$

We firstly prove that S, Q_{1}, Q_{2}, Q_{3} and Q_{4} are mutually exclusive. If not, let us suppose that among the five sets there are some two of them the intersection of which is nonempty, say $S \cap Q_{1} \neq \emptyset$. Assume $b \in S \cap Q_{1}$, then there exists some $b^{\prime} \in S \backslash\left\{b_{1}, \ldots, b_{i_{0}}\right\}$ such that $b=b_{1} b_{2} b_{3} b^{\prime}$, which leads that $b b_{1} b_{2} b_{3} b^{\prime}$ is a defining word of S with length 3 (if $b=b^{\prime}$ or b_{1} or b_{2} or b_{3}) or 5 . However, this is impossible under the given assumption for i_{0}. If there are other two of them whose intersection is nonempty, similarly, we can also find a defining word the length of which is an odd number and smaller than i_{0}, which is still impossible. By the above arguments, we get

$$
\begin{aligned}
\#\{S\}+\sum_{j=1}^{4} \#\left\{Q_{j}\right\} & =s+3\left(s-i_{0}\right)+i_{0}\left(i_{0}-1\right) / 2 \\
& =4 s+i_{0}\left(i_{0}-7\right) / 2 \geq 4 s \geq 2^{r}+4
\end{aligned}
$$

where the third and forth inequalities are from the assumptions $i_{0} \geq 7$ and $s \geq$ $2^{r-2}+1$, respectively. On the other hand, since $S \subset H_{r}, Q_{j} \subset H_{r}$ for $j=1,2,3,4$, and the five sets are mutually exclusive, we have $\#\{S\}+\sum_{j=1}^{4} \#\left\{Q_{j}\right\}<2^{r}$, the contradiction completing the proof of Lemma 9.

With the preparations above, we come to prove Part (b) of the theorem.
Suppose S is a resolution at least $I V$ design with s factors and $\bar{g}(S)$ is minimized, where $2^{r-2}+1 \leq s \leq 2^{r-1}$ for some $r \leq q$. Firstly, we prove the first half of Part (b). Since any design $S \subset H_{q}$ satisfying $2^{q-2}+1 \leq s \leq 2^{q-1}$ and having resolution at least $I V$ has exactly q independent factors, the first half of Part (b) holds when $r=q$. We only need to consider $r \leq q-1$.

It is obvious that S has at least r independent factors. If S has $h+1$ independent factors with $r \leq h \leq q-1$, we assume that S has the form in (A.5). That is,

$$
S=Q \cup\left\{a, a b_{1}, \ldots, a b_{t}\right\}
$$

where Q and $\left\{a, b_{1}, \ldots, b_{t}\right\}$ satisfy the conditions as in (A.5). Let $Q_{1}=\left\{a, a b_{1}\right.$, $\left.\ldots, a b_{t}\right\}$ and define $S^{*}=a Q \cup Q_{1}$, then $S^{*} \subset F_{q(h+1)}$. Further let $S^{* *}=Q \cup$ $\left\{b_{1}, \ldots, b_{t}\right\}$, then $S^{*}=\left\{a, a S^{* *}\right\}$ and $S^{* *} \subset H_{h}$. It leads that, $S^{* *}$ has $s-1$ factors with $2^{r-2} \leq s-1 \leq 2^{r-1}-1$ and among them there are h ones to be independent. Note that, when the range of S is over all the designs with resolution at least $I V$, then the range of $S^{* *}$ is over all the designs with $s-1$ factors. By the structure of $F_{q(h+1)}$, Lemma 8 and the condition of $\bar{g}(S)$ being minimized, we have

$$
\begin{aligned}
\bar{g}(S) & =\bar{g}\left(S^{*}\right)=\#\left\{\gamma: \gamma \in H_{q} \backslash S^{*}, B_{2}\left(S^{*}, \gamma\right)>0\right\} \\
& =\#\left\{\gamma: \gamma \in H_{h}, B_{2}\left(S^{*}, \gamma\right)>0\right\} \\
& =\#\left\{\gamma: \gamma \in H_{h} \backslash S^{* *}, B_{2}\left(S^{*}, \gamma\right)>0\right\}+\#\left\{\gamma: \gamma \in S^{* *}, B_{2}\left(S^{*}, \gamma\right)>0\right\} \\
& =\#\left\{\gamma: \gamma \in H_{h} \backslash S^{* *}, B_{2}\left(S^{* *}, \gamma\right)>0\right\}+(s-1) \\
& =\bar{g}\left(S^{* *}\right)+(s-1)
\end{aligned}
$$

Thus, $\bar{g}\left(S^{* *}\right)$ is minimized too. According to Part (a) of the theorem, $S^{* *}$ can only have $r-1$ independent factors, contradicting to it having $h(\geq r)$ independent factors. This contradiction finishes the proof of the first half of Part (b).

Next, we consider the proof of the second half of Part (b). Now the S has r independent factors. Suppose the S has the form of (A.5) with $h=r-1$, and define S^{*} as above. Butler (2003) noticed that if $A_{i}(S)=0$ for all odd numbers i 's, then $S \subset F_{q r}$. Therefore, to finish the proof of the second half, it is sufficient to prove that $A_{i}(S)=0$ for all odd numbers i 's. If not, according to Lemma 9 and the assumption that S has resolution at least $I V$, we have $A_{5}(S)>0$. In the following we prove that if $A_{5}(S)>0$, then $\bar{g}\left(S^{*}\right)<\bar{g}(S)$ which is a contradiction to the assumption that $\bar{g}(S)$ is minimized. By Lemma 8 and its proof, it suffices to show that there exists a $\gamma \in H_{r-1}$ such that $B_{2}\left(S^{*}, \gamma\right)>0, \gamma \notin S$ with $B_{2}(S, \gamma)>0$ and $a \gamma \notin S$ with $B_{2}(S, a \gamma)>0$.

Without loss of generality, we assume the factor a appears in the defining word with length 5 . By the structure of S, there are two possibilities for this defining word with length 5: one is that, besides a one more factor is from Q_{1} and the other three factors are from Q, and the other is that, besides a three more factors are from Q_{1} and the other one factor is from Q. After a suitable relabelling, we denote these two possibilities as

$$
I=a\left(a b_{1}\right) d_{1} d_{2} d_{3}, \quad \text { where } a b_{1} \in Q_{1}, \quad\left\{d_{1}, d_{2}, d_{3}\right\} \subset Q
$$

and

$$
I=a\left(a b_{1}\right)\left(a b_{2}\right)\left(a b_{3}\right) d_{1}, \quad \text { where }\left\{a b_{1}, a b_{2}, a b_{3}\right\} \subset Q_{1}, d_{1} \in Q .
$$

For the first case, let $\gamma=b_{1} d_{1}=d_{2} d_{3}$. It is easy to verify that $B_{2}\left(S^{*}, \gamma\right)>0$ and $B_{2}(S, \gamma)>0$. Note that $a \gamma=\left(a b_{1}\right) d_{1}$, where $a b_{1} \in Q_{1} \subset S$ and $d_{1} \in Q \subset S$. Therefore, we have $B_{2}(S, a \gamma)>0$. Since the S has resolution $I V, \gamma \notin S$ and $a \gamma \notin S$. For the second case, let $\gamma=\left(a b_{1}\right)\left(a b_{2}\right)=b_{3} d_{1}$ and the proof is similar as the first case. Hence the claim that $S \subset F_{q r}$ is proved. Noting that $F_{q r}$ and T_{r} are isomorphic, then the second half of Part (b) follows.

Proof for Part (c) of Theorem 1

We first prove that the four designs consisting of the first or last s columns of $F_{q r}$ or T_{r} are isomorphic. Suppose $F_{q r}^{\prime}$ consists of the 2^{r-1} columns in $F_{q r}$ in a contrary order. Then we can easily validate

$$
F_{q r}=\left\{q, q H_{r-1}\right\} \text { and } F_{q r}^{\prime}=\left\{12 \cdots(r-1) q, 12 \cdots(r-1) q H_{r-1}\right\}
$$

which mean that the design consisting of the first s columns of $F_{q r}$ and the one consisting of the last s columns of $F_{q r}$ are isomorphic. Similarly, the design consisting of the first s columns of T_{r} and the one consisting of the last s columns of T_{r} are isomorphic. When $F_{q r}$ and T_{r} are written in Yates order, from the structures of
$F_{q r}$ and T_{r}, we have the design consisting of the first s columns of T_{r} and the one consisting of the first s columns of $F_{q r}$ are isomorphic. Therefore the four designs consisting of the first or last s columns of $F_{q r}$ or T_{r} are isomorphic.

Suppose that S is a design with s factors and maximizes the sequence (2.4) among all the designs with resolution at least $I V$ and s factors, where $2^{r-2}+1 \leq s \leq 2^{r-1}$ for some $r \leq q$. By the above analysis, clearly, proving Part (c) is equivalent to showing that the unique choice of such S is the design consisting of the first s columns of $F_{q r}$. In the following we use the mathematical induction to prove this point.

Firstly, we show it holds for $r \leq 3$. According to the result of Part (b) just proved, we have $S \subset F_{q r}$. When $s=1,2,3$, under isomorphism, the unique choice of such S is $\{a\},\{a, 1 a\}$ and $\{a, 1 a, 2 a\}$, respectively. Here we remind the mention in Section 2 about resolution at least $I V$ when all the s factors are independent even $s \leq 3$. When $s=4$, according to Part (b) proved above, the number of independent factors in such S is 3 and the choice of S is only $\{a, 1 a, 2 a, 12 a\}$. So, for the four cases of s, such design S is the only one that consists of the first s columns of $F_{q r}$. Thus the result follows for $r \leq 3$.

Next, assume that, for $r \leq k$, the fact that the design maximizing (2.4) in all the designs with s factors and resolution at least $I V$ uniquely consists of the first s columns in $F_{q r}$ is true, and come to prove that for $r=k+1$ the fact is true too. By Part (b) of the theorem, we have $S \subset F_{q(k+1)}$. Note that, by Lemma 1 (a) with q being taken as $k+1$ and the condition $2^{k-1}+1 \leq s \leq 2^{k}$, for any $\gamma \in H_{k}$, we have

$$
B_{2}(S, \gamma)=B_{2}\left(F_{q(k+1)} \backslash S, \gamma\right)+s-2^{k-1} \geq 1
$$

and hence $\bar{g}(S)=2^{k}-1$, which is a constant. Therefore, maximizing (2.4) is equivalent to maximizing ${ }_{2}^{\#} C_{2}(S)$. By Lemma 1 (c) with q being taken as $k+1$, we have that maximizing ${ }_{2}^{\#} C_{2}(S)$ is equivalent to maximizing the sequence

$$
\begin{equation*}
\left\{-\bar{g}\left(F_{q(k+1)} \backslash S\right),{ }_{2}^{\#} C_{2}\left(F_{q(k+1)} \backslash S\right)\right\} . \tag{A.7}
\end{equation*}
$$

Note that, when $r=k+1$, by the assumptions in Part (c) we have $2^{k-1}+1 \leq s \leq 2^{k}$ and the number of factors in $F_{q(k+1)} \backslash S$ is smaller than 2^{k-1}. Applying the inductive assumption for $r \leq k$, if $F_{q(k+1)} \backslash S$ consists of the first $2^{k}-s$ columns in $F_{q(k+1)}$, it uniquely maximizes the sequence (A.7). As we already proved at the beginning of this part, the design consisting of the last $2^{k}-s$ columns in $F_{q(k+1)}$ columns and the one consisting the first $2^{k}-s$ columns in $F_{q(k+1)}$ columns are isomorphic. Therefore if we choose $F_{q(k+1)} \backslash S$ to be the one consisting of the last $2^{k}-s$ columns in $F_{q(k+1)}$, then it also maximizes the sequence (A.7). In this way, the unique choice of such S is the set of the first s columns in $F_{q(k+1)}$, which means that, the result is true for $r=k+1$ and hence it is true for all $r \leq q$ by the mathematical induction. This completes the proof of Part (c).

References

Ai, M.Y. and Zhang, R.C. (2004). s^{n-m} designs containing clear main effects or clear two-factor interactions. Statist. Probab. Letters 69, 151-160.
Bruen, A.A., Haddad, L. and Wehlau, D.L. (1998). Binary codes and caps. J. Combinat. Des. 6, 275-284.

Butler, N.A. (2003). Some theory for constructing minimum aberration fractional factorial designs. Biometrika 90, 233-238.
Butler, N.A., (2007). Results for two-level fractional factorial designs of resolution IV or more. J. Statist. Plann. Inference 137, 317-323.
Chen, B.J., Li, P.F., Liu, M.Q. and Zhang, R.C. (2006). Some results on blocked regular 2-level fractional factorial designs with clear effects. J. Statist. Plann. Inference 136, 4436-4449.
Chen, H. and Cheng, C.-S. (2006). Doubling and projection: A method of constructing two level designs of resolution IV. Ann. Statist. 34, 546C558.
Chen, H. and Hedayat, A.S. (1996). 2^{n-l} designs with weak minimum aberration. Ann. Statist. 24, 2536-2548.
Chen, H. and Hedayat, A.S. (1998). 2^{n-m} designs with resolution III and IV containing clear two-factor interactions. J. Statist. Plann. Inference 75, 147-158.
Chen, J., Sun, D.X. and Wu, C.F.J. (1993). A catalogue of two-level and three-level fractional factorial designs with small runs. Internat. statist. Rev. 61, 131-145.
Chen, J. and Wu, C.F.J. (1991). Some results on s^{n-k} fractional factorial designs with minimum aberration or optimal moments. Ann. Statist. 19, 1028-1041.
Cheng, C.-S. and Mukerjee, R. (1998). Regular fractional factorial designs with minimum aberration and maximum estimation capacity. Ann. Statist. 26, 2289-2300.

Cheng, C.-S., Steinberg, D.M. and Sun, D.X. (1999). Minimum aberration and model robustness for two-level factorial designs. J. Roy. Statist. Soc. Ser. B 61, 85-93.
Cheng C.-S. and Tang B. (2005). A general theory of minimum aberration and its applications. Ann. Statist. 33, 944-958.
Franklin, M.F. (1984). Constructing tables of minimum aberration p^{n-m} designs. Technometrics 26, 225-232.
Fries, A. and Hunter, W.G. (1980). Minimum aberration 2^{k-p} designs. Technometrics 22, 601-608.
Li, P.F., Chen, B.J., Liu, M.Q. and Zhang, R.C. (2006). A note on minimum aberration and clear criteria. Statist. Probab. Letters 76, 1007-1011.

Mukerjee, R. and Wu, C.F.J. (2006). A Modern Theory of Factorial Designs. Springer Series in Statistics, Springer Science+Business Media Inc., New York.
Sun, D.X. (1993). Estimation capacity and related topics in experimental designs. PhD dissertation. University of Waterloo, Waterloo.
Tang, B., Ma, F., Ingram, D. and Wang, H. (2002). Bounds on the maximum number of clear twofactor interactions for 2^{m-p} designs of resolution III and IV. Canad. J. Statist. 30, 127-136.
Tang, B. and Wu, C.F.J. (1996). Characterization of minimum aberration 2^{n-k} designs in terms of their complementary designs. Ann. Statist. 25, 1176-1188.
Wu, C.F.J. and Chen, Y. (1992). A graph-aided method for planning two-level experiments when certain interactions are important. Technometrics 34, 162-175.
Wu, C.F.J. and Hamada, M. (2000). Experiments: Planning, Analysis, and Parameter Design Optimization. Wiley, New York.
imsart-aos ver. 2007/12/10 file: GMC_Constru_Annals(0819).tex date: August 20, 2008

Wu, H.Q. and Wu, C.F.J. (2002). Clear two-factor interaction and minimum aberration. Ann. Statist. 30, 1496-1511.
Xu, H. and Cheng, C.-S. (2008). A complementary design theory for doubling. Ann. Statist. 36, 445-457.
Yang, J.F., Li, P.F., Liu, M.Q. and Zhang, R.C. (2006). $2^{\left(n_{1}-n_{2}\right)-\left(k_{1}-k_{2}\right)}$ fractional factorial splitplot designs containing clear effects. J. Statist. Plann. Inference 136, 4450-4458.
Zhang, R.C., Li, P., Zhao, S.L. and Ai, M.Y. (2008). A general minimum lower-order confounding criterion for two-level regular designs. Statist. Sinica 18(4), to appear.
Zhang, R.C. and Mukerjee, R. (2008). Characterization of general minimum lower order confounding via complementary sets. Statist. Sinica, to appear.
Zhang, R.C. and Shao, Q. (2001). Minimum aberration $\left(s^{2}\right) s^{n-k}$ designs. Statist. Sinica 11, 213223.

Zhao, S.L. and Zhang, R.C. (2008). $2^{m} 4^{n}$ designs with resolution III or IV containing clear twofactor interaction components. Statist. papers 49, 441-454.

Department of Mathematical
and Statistical Sciences
University of Alberta
Edmonton, AB T6G 2G1, Canada
E-mail: pengfei@stat.ualberta.ca
School of Mathematical Sciences
Qufu Normal University
Qufu 273165, China
E-MAIL: zhaoshli758@126.com

LPMC and School of Mathematical Sciences
Nankai University, Tianjin 300071, China, and
KLAS and School of Mathematics and Statistics Northeast Normal University
Changchun 130024, China
E-mAIL: zhrch@nankai.edu.cn
URL: http://202.113.29.3/~rczhang/

[^0]: *This work was supported by the NNSF of China grant Nos. 10571093 and 10771123, the NSF of Shandong Province of China grant No. Q2007A05, and the SRFDP of China grant No. 20050055038. AMS 2000 subject classifications: Primary 62 K 15 ; secondary 62 K 05.
 Keywords and phrases: Alias set, Aliased effect-number pattern, Effect hierarchy principle, Minimum aberration, Resolution, Wordlength pattern.

[^1]: imsart-aos ver. 2007/12/10 file: GMC_Constru_Annals(0819).tex date: August 20, 2008

[^2]: imsart-aos ver. 2007/12/10 file: GMC_Constru_Annals(0819).tex date: August 20, 2008

[^3]: imsart-aos ver. 2007/12/10 file: GMC_Constru_Annals(0819).tex date: August 20, 2008

